2025-03-01 18:41:36 +01:00

2401 lines
73 KiB
Go

// Package immutable provides immutable collection types.
//
// Introduction
//
// Immutable collections provide an efficient, safe way to share collections
// of data while minimizing locks. The collections in this package provide
// List, Map, and SortedMap implementations. These act similarly to slices
// and maps, respectively, except that altering a collection returns a new
// copy of the collection with that change.
//
// Because collections are unable to change, they are safe for multiple
// goroutines to read from at the same time without a mutex. However, these
// types of collections come with increased CPU & memory usage as compared
// with Go's built-in collection types so please evaluate for your specific
// use.
//
// Collection Types
//
// The List type provides an API similar to Go slices. They allow appending,
// prepending, and updating of elements. Elements can also be fetched by index
// or iterated over using a ListIterator.
//
// The Map & SortedMap types provide an API similar to Go maps. They allow
// values to be assigned to unique keys and allow for the deletion of keys.
// Values can be fetched by key and key/value pairs can be iterated over using
// the appropriate iterator type. Both map types provide the same API. The
// SortedMap, however, provides iteration over sorted keys while the Map
// provides iteration over unsorted keys. Maps improved performance and memory
// usage as compared to SortedMaps.
//
// Hashing and Sorting
//
// Map types require the use of a Hasher implementation to calculate hashes for
// their keys and check for key equality. SortedMaps require the use of a
// Comparer implementation to sort keys in the map.
//
// These collection types automatically provide built-in hasher and comparers
// for int, string, and byte slice keys. If you are using one of these key types
// then simply pass a nil into the constructor. Otherwise you will need to
// implement a custom Hasher or Comparer type. Please see the provided
// implementations for reference.
package immutable
import (
"fmt"
"math/bits"
"reflect"
"sort"
"strings"
"golang.org/x/exp/constraints"
)
// List is a dense, ordered, indexed collections. They are analogous to slices
// in Go. They can be updated by appending to the end of the list, prepending
// values to the beginning of the list, or updating existing indexes in the
// list.
type List[T comparable] struct {
root listNode[T] // root node
origin int // offset to zero index element
size int // total number of elements in use
}
// NewList returns a new empty instance of List.
func NewList[T comparable]() *List[T] {
return &List[T]{
root: &listLeafNode[T]{},
}
}
// clone returns a copy of the list.
func (l *List[T]) clone() *List[T] {
other := *l
return &other
}
// Len returns the number of elements in the list.
func (l *List[T]) Len() int {
return l.size
}
// cap returns the total number of possible elements for the current depth.
func (l *List[T]) cap() int {
return 1 << (l.root.depth() * listNodeBits)
}
// Get returns the value at the given index. Similar to slices, this method will
// panic if index is below zero or is greater than or equal to the list size.
func (l *List[T]) Get(index int) T {
if index < 0 || index >= l.size {
panic(fmt.Sprintf("immutable.List.Get: index %d out of bounds", index))
}
return l.root.get(l.origin + index)
}
// Set returns a new list with value set at index. Similar to slices, this
// method will panic if index is below zero or if the index is greater than
// or equal to the list size.
func (l *List[T]) Set(index int, value T) *List[T] {
return l.set(index, value, false)
}
func (l *List[T]) set(index int, value T, mutable bool) *List[T] {
if index < 0 || index >= l.size {
panic(fmt.Sprintf("immutable.List.Set: index %d out of bounds", index))
}
other := l
if !mutable {
other = l.clone()
}
other.root = other.root.set(l.origin+index, value, mutable)
return other
}
// Append returns a new list with value added to the end of the list.
func (l *List[T]) Append(value T) *List[T] {
return l.append(value, false)
}
func (l *List[T]) append(value T, mutable bool) *List[T] {
other := l
if !mutable {
other = l.clone()
}
// Expand list to the right if no slots remain.
if other.size+other.origin >= l.cap() {
newRoot := &listBranchNode[T]{d: other.root.depth() + 1}
newRoot.children[0] = other.root
other.root = newRoot
}
// Increase size and set the last element to the new value.
other.size++
other.root = other.root.set(other.origin+other.size-1, value, mutable)
return other
}
// Prepend returns a new list with value added to the beginning of the list.
func (l *List[T]) Prepend(value T) *List[T] {
return l.prepend(value, false)
}
func (l *List[T]) prepend(value T, mutable bool) *List[T] {
other := l
if !mutable {
other = l.clone()
}
// Expand list to the left if no slots remain.
if other.origin == 0 {
newRoot := &listBranchNode[T]{d: other.root.depth() + 1}
newRoot.children[listNodeSize-1] = other.root
other.root = newRoot
other.origin += (listNodeSize - 1) << (other.root.depth() * listNodeBits)
}
// Increase size and move origin back. Update first element to value.
other.size++
other.origin--
other.root = other.root.set(other.origin, value, mutable)
return other
}
// Slice returns a new list of elements between start index and end index.
// Similar to slices, this method will panic if start or end are below zero or
// greater than the list size. A panic will also occur if start is greater than
// end.
//
// Unlike Go slices, references to inaccessible elements will be automatically
// removed so they can be garbage collected.
func (l *List[T]) Slice(start, end int) *List[T] {
return l.slice(start, end, false)
}
func (l *List[T]) slice(start, end int, mutable bool) *List[T] {
// Panics similar to Go slices.
if start < 0 || start > l.size {
panic(fmt.Sprintf("immutable.List.Slice: start index %d out of bounds", start))
} else if end < 0 || end > l.size {
panic(fmt.Sprintf("immutable.List.Slice: end index %d out of bounds", end))
} else if start > end {
panic(fmt.Sprintf("immutable.List.Slice: invalid slice index: [%d:%d]", start, end))
}
// Return the same list if the start and end are the entire range.
if start == 0 && end == l.size {
return l
}
// Create copy, if immutable.
other := l
if !mutable {
other = l.clone()
}
// Update origin/size.
other.origin = l.origin + start
other.size = end - start
// Contract tree while the start & end are in the same child node.
for other.root.depth() > 1 {
i := (other.origin >> (other.root.depth() * listNodeBits)) & listNodeMask
j := ((other.origin + other.size - 1) >> (other.root.depth() * listNodeBits)) & listNodeMask
if i != j {
break // branch contains at least two nodes, exit
}
// Replace the current root with the single child & update origin offset.
other.origin -= i << (other.root.depth() * listNodeBits)
other.root = other.root.(*listBranchNode[T]).children[i]
}
// Ensure all references are removed before start & after end.
other.root = other.root.deleteBefore(other.origin, mutable)
other.root = other.root.deleteAfter(other.origin+other.size-1, mutable)
return other
}
// Iterator returns a new iterator for this list positioned at the first index.
func (l *List[T]) Iterator() *ListIterator[T] {
itr := &ListIterator[T]{list: l}
itr.First()
return itr
}
// ListBuilder represents an efficient builder for creating new Lists.
type ListBuilder[T comparable] struct {
list *List[T] // current state
}
// NewListBuilder returns a new instance of ListBuilder.
func NewListBuilder[T comparable]() *ListBuilder[T] {
return &ListBuilder[T]{list: NewList[T]()}
}
// List returns the current copy of the list.
// The builder should not be used again after the list after this call.
func (b *ListBuilder[T]) List() *List[T] {
assert(b.list != nil, "immutable.ListBuilder.List(): duplicate call to fetch list")
list := b.list
b.list = nil
return list
}
// Len returns the number of elements in the underlying list.
func (b *ListBuilder[T]) Len() int {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
return b.list.Len()
}
// Get returns the value at the given index. Similar to slices, this method will
// panic if index is below zero or is greater than or equal to the list size.
func (b *ListBuilder[T]) Get(index int) T {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
return b.list.Get(index)
}
// Set updates the value at the given index. Similar to slices, this method will
// panic if index is below zero or if the index is greater than or equal to the
// list size.
func (b *ListBuilder[T]) Set(index int, value T) {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
b.list = b.list.set(index, value, true)
}
// Append adds value to the end of the list.
func (b *ListBuilder[T]) Append(value T) {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
b.list = b.list.append(value, true)
}
// Prepend adds value to the beginning of the list.
func (b *ListBuilder[T]) Prepend(value T) {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
b.list = b.list.prepend(value, true)
}
// Slice updates the list with a sublist of elements between start and end index.
// See List.Slice() for more details.
func (b *ListBuilder[T]) Slice(start, end int) {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
b.list = b.list.slice(start, end, true)
}
// Iterator returns a new iterator for the underlying list.
func (b *ListBuilder[T]) Iterator() *ListIterator[T] {
assert(b.list != nil, "immutable.ListBuilder: builder invalid after List() invocation")
return b.list.Iterator()
}
// Constants for bit shifts used for levels in the List trie.
const (
listNodeBits = 5
listNodeSize = 1 << listNodeBits
listNodeMask = listNodeSize - 1
)
// listNode represents either a branch or leaf node in a List.
type listNode[T comparable] interface {
depth() uint
get(index int) T
set(index int, v T, mutable bool) listNode[T]
containsBefore(index int) bool
containsAfter(index int) bool
deleteBefore(index int, mutable bool) listNode[T]
deleteAfter(index int, mutable bool) listNode[T]
}
// newListNode returns a leaf node for depth zero, otherwise returns a branch node.
func newListNode[T comparable](depth uint) listNode[T] {
if depth == 0 {
return &listLeafNode[T]{}
}
return &listBranchNode[T]{d: depth}
}
// listBranchNode represents a branch of a List tree at a given depth.
type listBranchNode[T comparable] struct {
d uint // depth
children [listNodeSize]listNode[T]
}
// depth returns the depth of this branch node from the leaf.
func (n *listBranchNode[T]) depth() uint { return n.d }
// get returns the child node at the segment of the index for this depth.
func (n *listBranchNode[T]) get(index int) T {
idx := (index >> (n.d * listNodeBits)) & listNodeMask
return n.children[idx].get(index)
}
// set recursively updates the value at index for each lower depth from the node.
func (n *listBranchNode[T]) set(index int, v T, mutable bool) listNode[T] {
idx := (index >> (n.d * listNodeBits)) & listNodeMask
// Find child for the given value in the branch. Create new if it doesn't exist.
child := n.children[idx]
if child == nil {
child = newListNode[T](n.depth() - 1)
}
// Return a copy of this branch with the new child.
var other *listBranchNode[T]
if mutable {
other = n
} else {
tmp := *n
other = &tmp
}
other.children[idx] = child.set(index, v, mutable)
return other
}
// containsBefore returns true if non-nil values exists between [0,index).
func (n *listBranchNode[T]) containsBefore(index int) bool {
idx := (index >> (n.d * listNodeBits)) & listNodeMask
// Quickly check if any direct children exist before this segment of the index.
for i := 0; i < idx; i++ {
if n.children[i] != nil {
return true
}
}
// Recursively check for children directly at the given index at this segment.
if n.children[idx] != nil && n.children[idx].containsBefore(index) {
return true
}
return false
}
// containsAfter returns true if non-nil values exists between (index,listNodeSize).
func (n *listBranchNode[T]) containsAfter(index int) bool {
idx := (index >> (n.d * listNodeBits)) & listNodeMask
// Quickly check if any direct children exist after this segment of the index.
for i := idx + 1; i < len(n.children); i++ {
if n.children[i] != nil {
return true
}
}
// Recursively check for children directly at the given index at this segment.
if n.children[idx] != nil && n.children[idx].containsAfter(index) {
return true
}
return false
}
// deleteBefore returns a new node with all elements before index removed.
func (n *listBranchNode[T]) deleteBefore(index int, mutable bool) listNode[T] {
// Ignore if no nodes exist before the given index.
if !n.containsBefore(index) {
return n
}
// Return a copy with any nodes prior to the index removed.
idx := (index >> (n.d * listNodeBits)) & listNodeMask
var other *listBranchNode[T]
if mutable {
other = n
for i := 0; i < idx; i++ {
n.children[i] = nil
}
} else {
other = &listBranchNode[T]{d: n.d}
copy(other.children[idx:][:], n.children[idx:][:])
}
if other.children[idx] != nil {
other.children[idx] = other.children[idx].deleteBefore(index, mutable)
}
return other
}
// deleteBefore returns a new node with all elements before index removed.
func (n *listBranchNode[T]) deleteAfter(index int, mutable bool) listNode[T] {
// Ignore if no nodes exist after the given index.
if !n.containsAfter(index) {
return n
}
// Return a copy with any nodes after the index removed.
idx := (index >> (n.d * listNodeBits)) & listNodeMask
var other *listBranchNode[T]
if mutable {
other = n
for i := idx + 1; i < len(n.children); i++ {
n.children[i] = nil
}
} else {
other = &listBranchNode[T]{d: n.d}
copy(other.children[:idx+1], n.children[:idx+1])
}
if other.children[idx] != nil {
other.children[idx] = other.children[idx].deleteAfter(index, mutable)
}
return other
}
// listLeafNode represents a leaf node in a List.
type listLeafNode[T comparable] struct {
children [listNodeSize]T
}
// depth always returns 0 for leaf nodes.
func (n *listLeafNode[T]) depth() uint { return 0 }
// get returns the value at the given index.
func (n *listLeafNode[T]) get(index int) T {
return n.children[index&listNodeMask]
}
// set returns a copy of the node with the value at the index updated to v.
func (n *listLeafNode[T]) set(index int, v T, mutable bool) listNode[T] {
idx := index & listNodeMask
var other *listLeafNode[T]
if mutable {
other = n
} else {
tmp := *n
other = &tmp
}
other.children[idx] = v
var otherLN listNode[T]
otherLN = other
return otherLN
}
// containsBefore returns true if non-nil values exists between [0,index).
func (n *listLeafNode[T]) containsBefore(index int) bool {
idx := index & listNodeMask
var empty T
for i := 0; i < idx; i++ {
if n.children[i] != empty {
return true
}
}
return false
}
// containsAfter returns true if non-nil values exists between (index,listNodeSize).
func (n *listLeafNode[T]) containsAfter(index int) bool {
idx := index & listNodeMask
var empty T
for i := idx + 1; i < len(n.children); i++ {
if n.children[i] != empty {
return true
}
}
return false
}
// deleteBefore returns a new node with all elements before index removed.
func (n *listLeafNode[T]) deleteBefore(index int, mutable bool) listNode[T] {
if !n.containsBefore(index) {
return n
}
idx := index & listNodeMask
var other *listLeafNode[T]
if mutable {
other = n
var empty T
for i := 0; i < idx; i++ {
other.children[i] = empty
}
} else {
other = &listLeafNode[T]{}
copy(other.children[idx:][:], n.children[idx:][:])
}
return other
}
// deleteBefore returns a new node with all elements before index removed.
func (n *listLeafNode[T]) deleteAfter(index int, mutable bool) listNode[T] {
if !n.containsAfter(index) {
return n
}
idx := index & listNodeMask
var other *listLeafNode[T]
if mutable {
other = n
var empty T
for i := idx + 1; i < len(n.children); i++ {
other.children[i] = empty
}
} else {
other = &listLeafNode[T]{}
copy(other.children[:idx+1][:], n.children[:idx+1][:])
}
return other
}
// ListIterator represents an ordered iterator over a list.
type ListIterator[T comparable] struct {
list *List[T] // source list
index int // current index position
stack [32]listIteratorElem[T] // search stack
depth int // stack depth
}
// Done returns true if no more elements remain in the iterator.
func (itr *ListIterator[T]) Done() bool {
return itr.index < 0 || itr.index >= itr.list.Len()
}
// First positions the iterator on the first index.
// If source list is empty then no change is made.
func (itr *ListIterator[T]) First() {
if itr.list.Len() != 0 {
itr.Seek(0)
}
}
// Last positions the iterator on the last index.
// If source list is empty then no change is made.
func (itr *ListIterator[T]) Last() {
if n := itr.list.Len(); n != 0 {
itr.Seek(n - 1)
}
}
// Seek moves the iterator position to the given index in the list.
// Similar to Go slices, this method will panic if index is below zero or if
// the index is greater than or equal to the list size.
func (itr *ListIterator[T]) Seek(index int) {
// Panic similar to Go slices.
if index < 0 || index >= itr.list.Len() {
panic(fmt.Sprintf("immutable.ListIterator.Seek: index %d out of bounds", index))
}
itr.index = index
// Reset to the bottom of the stack at seek to the correct position.
itr.stack[0] = listIteratorElem[T]{node: itr.list.root}
itr.depth = 0
itr.seek(index)
}
// Next returns the current index and its value & moves the iterator forward.
// Returns an index of -1 if the there are no more elements to return.
func (itr *ListIterator[T]) Next() (index int, value T) {
// Exit immediately if there are no elements remaining.
var empty T
if itr.Done() {
return -1, empty
}
// Retrieve current index & value.
elem := &itr.stack[itr.depth]
index, value = itr.index, elem.node.(*listLeafNode[T]).children[elem.index]
// Increase index. If index is at the end then return immediately.
itr.index++
if itr.Done() {
return index, value
}
// Move up stack until we find a node that has remaining position ahead.
for ; itr.depth > 0 && itr.stack[itr.depth].index >= listNodeSize-1; itr.depth-- {
}
// Seek to correct position from current depth.
itr.seek(itr.index)
return index, value
}
// Prev returns the current index and value and moves the iterator backward.
// Returns an index of -1 if the there are no more elements to return.
func (itr *ListIterator[T]) Prev() (index int, value T) {
// Exit immediately if there are no elements remaining.
var empty T
if itr.Done() {
return -1, empty
}
// Retrieve current index & value.
elem := &itr.stack[itr.depth]
index, value = itr.index, elem.node.(*listLeafNode[T]).children[elem.index]
// Decrease index. If index is past the beginning then return immediately.
itr.index--
if itr.Done() {
return index, value
}
// Move up stack until we find a node that has remaining position behind.
for ; itr.depth > 0 && itr.stack[itr.depth].index == 0; itr.depth-- {
}
// Seek to correct position from current depth.
itr.seek(itr.index)
return index, value
}
// seek positions the stack to the given index from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *ListIterator[T]) seek(index int) {
// Iterate over each level until we reach a leaf node.
for {
elem := &itr.stack[itr.depth]
elem.index = ((itr.list.origin + index) >> (elem.node.depth() * listNodeBits)) & listNodeMask
switch node := elem.node.(type) {
case *listBranchNode[T]:
child := node.children[elem.index]
itr.stack[itr.depth+1] = listIteratorElem[T]{node: child}
itr.depth++
case *listLeafNode[T]:
return
}
}
}
// listIteratorElem represents the node and it's child index within the stack.
type listIteratorElem[T comparable] struct {
node listNode[T]
index int
}
// Size thresholds for each type of branch node.
const (
maxArrayMapSize = 8
maxBitmapIndexedSize = 16
)
// Segment bit shifts within the map tree.
const (
mapNodeBits = 5
mapNodeSize = 1 << mapNodeBits
mapNodeMask = mapNodeSize - 1
)
// Map represents an immutable hash map implementation. The map uses a Hasher
// to generate hashes and check for equality of key values.
//
// It is implemented as an Hash Array Mapped Trie.
type Map[K constraints.Ordered, V any] struct {
size int // total number of key/value pairs
root mapNode[K, V] // root node of trie
hasher Hasher[K] // hasher implementation
}
// NewMap returns a new instance of Map. If hasher is nil, a default hasher
// implementation will automatically be chosen based on the first key added.
// Default hasher implementations only exist for int, string, and byte slice types.
func NewMap[K constraints.Ordered, V any](hasher Hasher[K]) *Map[K, V] {
return &Map[K, V]{
hasher: hasher,
}
}
// Len returns the number of elements in the map.
func (m *Map[K, V]) Len() int {
return m.size
}
// clone returns a shallow copy of m.
func (m *Map[K, V]) clone() *Map[K, V] {
other := *m
return &other
}
// Get returns the value for a given key and a flag indicating whether the
// key exists. This flag distinguishes a nil value set on a key versus a
// non-existent key in the map.
func (m *Map[K, V]) Get(key K) (value V, ok bool) {
var empty V
if m.root == nil {
return empty, false
}
keyHash := m.hasher.Hash(key)
return m.root.get(key, 0, keyHash, m.hasher)
}
// Set returns a map with the key set to the new value. A nil value is allowed.
//
// This function will return a new map even if the updated value is the same as
// the existing value because Map does not track value equality.
func (m *Map[K, V]) Set(key K, value V) *Map[K, V] {
return m.set(key, value, false)
}
func (m *Map[K, V]) set(key K, value V, mutable bool) *Map[K, V] {
// Set a hasher on the first value if one does not already exist.
hasher := m.hasher
if hasher == nil {
hasher = NewHasher(key)
}
// Generate copy if necessary.
other := m
if !mutable {
other = m.clone()
}
other.hasher = hasher
// If the map is empty, initialize with a simple array node.
if m.root == nil {
other.size = 1
other.root = &mapArrayNode[K, V]{entries: []mapEntry[K, V]{{key: key, value: value}}}
return other
}
// Otherwise copy the map and delegate insertion to the root.
// Resized will return true if the key does not currently exist.
var resized bool
other.root = m.root.set(key, value, 0, hasher.Hash(key), hasher, mutable, &resized)
if resized {
other.size++
}
return other
}
// Delete returns a map with the given key removed.
// Removing a non-existent key will cause this method to return the same map.
func (m *Map[K, V]) Delete(key K) *Map[K, V] {
return m.delete(key, false)
}
func (m *Map[K, V]) delete(key K, mutable bool) *Map[K, V] {
// Return original map if no keys exist.
if m.root == nil {
return m
}
// If the delete did not change the node then return the original map.
var resized bool
newRoot := m.root.delete(key, 0, m.hasher.Hash(key), m.hasher, mutable, &resized)
if !resized {
return m
}
// Generate copy if necessary.
other := m
if !mutable {
other = m.clone()
}
// Return copy of map with new root and decreased size.
other.size = m.size - 1
other.root = newRoot
return other
}
// Iterator returns a new iterator for the map.
func (m *Map[K, V]) Iterator() *MapIterator[K, V] {
itr := &MapIterator[K, V]{m: m}
itr.First()
return itr
}
// MapBuilder represents an efficient builder for creating Maps.
type MapBuilder[K constraints.Ordered, V any] struct {
m *Map[K, V] // current state
}
// NewMapBuilder returns a new instance of MapBuilder.
func NewMapBuilder[K constraints.Ordered, V any](hasher Hasher[K]) *MapBuilder[K, V] {
return &MapBuilder[K, V]{m: NewMap[K, V](hasher)}
}
// Map returns the underlying map. Only call once.
// Builder is invalid after call. Will panic on second invocation.
func (b *MapBuilder[K, V]) Map() *Map[K, V] {
assert(b.m != nil, "immutable.SortedMapBuilder.Map(): duplicate call to fetch map")
m := b.m
b.m = nil
return m
}
// Len returns the number of elements in the underlying map.
func (b *MapBuilder[K, V]) Len() int {
assert(b.m != nil, "immutable.MapBuilder: builder invalid after Map() invocation")
return b.m.Len()
}
// Get returns the value for the given key.
func (b *MapBuilder[K, V]) Get(key K) (value V, ok bool) {
assert(b.m != nil, "immutable.MapBuilder: builder invalid after Map() invocation")
return b.m.Get(key)
}
// Set sets the value of the given key. See Map.Set() for additional details.
func (b *MapBuilder[K, V]) Set(key K, value V) {
assert(b.m != nil, "immutable.MapBuilder: builder invalid after Map() invocation")
b.m = b.m.set(key, value, true)
}
// Delete removes the given key. See Map.Delete() for additional details.
func (b *MapBuilder[K, V]) Delete(key K) {
assert(b.m != nil, "immutable.MapBuilder: builder invalid after Map() invocation")
b.m = b.m.delete(key, true)
}
// Iterator returns a new iterator for the underlying map.
func (b *MapBuilder[K, V]) Iterator() *MapIterator[K, V] {
assert(b.m != nil, "immutable.MapBuilder: builder invalid after Map() invocation")
return b.m.Iterator()
}
// mapNode represents any node in the map tree.
type mapNode[K constraints.Ordered, V any] interface {
get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool)
set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V]
delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V]
}
var _ mapNode[string, any] = (*mapArrayNode[string, any])(nil)
var _ mapNode[string, any] = (*mapBitmapIndexedNode[string, any])(nil)
var _ mapNode[string, any] = (*mapHashArrayNode[string, any])(nil)
var _ mapNode[string, any] = (*mapValueNode[string, any])(nil)
var _ mapNode[string, any] = (*mapHashCollisionNode[string, any])(nil)
// mapLeafNode represents a node that stores a single key hash at the leaf of the map tree.
type mapLeafNode[K constraints.Ordered, V any] interface {
mapNode[K, V]
keyHashValue() uint32
}
var _ mapLeafNode[string, any] = (*mapValueNode[string, any])(nil)
var _ mapLeafNode[string, any] = (*mapHashCollisionNode[string, any])(nil)
// mapArrayNode is a map node that stores key/value pairs in a slice.
// Entries are stored in insertion order. An array node expands into a bitmap
// indexed node once a given threshold size is crossed.
type mapArrayNode[K constraints.Ordered, V any] struct {
entries []mapEntry[K, V]
}
// indexOf returns the entry index of the given key. Returns -1 if key not found.
func (n *mapArrayNode[K, V]) indexOf(key K, h Hasher[K]) int {
for i := range n.entries {
if h.Equal(n.entries[i].key, key) {
return i
}
}
return -1
}
// get returns the value for the given key.
func (n *mapArrayNode[K, V]) get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool) {
i := n.indexOf(key, h)
if i == -1 {
return value, false
}
return n.entries[i].value, true
}
// set inserts or updates the value for a given key. If the key is inserted and
// the new size crosses the max size threshold, a bitmap indexed node is returned.
func (n *mapArrayNode[K, V]) set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
idx := n.indexOf(key, h)
// Mark as resized if the key doesn't exist.
if idx == -1 {
*resized = true
}
// If we are adding and it crosses the max size threshold, expand the node.
// We do this by continually setting the entries to a value node and expanding.
if idx == -1 && len(n.entries) >= maxArrayMapSize {
var node mapNode[K, V] = newMapValueNode(h.Hash(key), key, value)
for _, entry := range n.entries {
node = node.set(entry.key, entry.value, 0, h.Hash(entry.key), h, false, resized)
}
return node
}
// Update in-place if mutable.
if mutable {
if idx != -1 {
n.entries[idx] = mapEntry[K, V]{key, value}
} else {
n.entries = append(n.entries, mapEntry[K, V]{key, value})
}
return n
}
// Update existing entry if a match is found.
// Otherwise append to the end of the element list if it doesn't exist.
var other mapArrayNode[K, V]
if idx != -1 {
other.entries = make([]mapEntry[K, V], len(n.entries))
copy(other.entries, n.entries)
other.entries[idx] = mapEntry[K, V]{key, value}
} else {
other.entries = make([]mapEntry[K, V], len(n.entries)+1)
copy(other.entries, n.entries)
other.entries[len(other.entries)-1] = mapEntry[K, V]{key, value}
}
return &other
}
// delete removes the given key from the node. Returns the same node if key does
// not exist. Returns a nil node when removing the last entry.
func (n *mapArrayNode[K, V]) delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
idx := n.indexOf(key, h)
// Return original node if key does not exist.
if idx == -1 {
return n
}
*resized = true
// Return nil if this node will contain no nodes.
if len(n.entries) == 1 {
return nil
}
// Update in-place, if mutable.
if mutable {
copy(n.entries[idx:], n.entries[idx+1:])
n.entries[len(n.entries)-1] = mapEntry[K, V]{}
n.entries = n.entries[:len(n.entries)-1]
return n
}
// Otherwise create a copy with the given entry removed.
other := &mapArrayNode[K, V]{entries: make([]mapEntry[K, V], len(n.entries)-1)}
copy(other.entries[:idx], n.entries[:idx])
copy(other.entries[idx:], n.entries[idx+1:])
return other
}
// mapBitmapIndexedNode represents a map branch node with a variable number of
// node slots and indexed using a bitmap. Indexes for the node slots are
// calculated by counting the number of set bits before the target bit using popcount.
type mapBitmapIndexedNode[K constraints.Ordered, V any] struct {
bitmap uint32
nodes []mapNode[K, V]
}
// get returns the value for the given key.
func (n *mapBitmapIndexedNode[K, V]) get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool) {
bit := uint32(1) << ((keyHash >> shift) & mapNodeMask)
if (n.bitmap & bit) == 0 {
return value, false
}
child := n.nodes[bits.OnesCount32(n.bitmap&(bit-1))]
return child.get(key, shift+mapNodeBits, keyHash, h)
}
// set inserts or updates the value for the given key. If a new key is inserted
// and the size crosses the max size threshold then a hash array node is returned.
func (n *mapBitmapIndexedNode[K, V]) set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
// Extract the index for the bit segment of the key hash.
keyHashFrag := (keyHash >> shift) & mapNodeMask
// Determine the bit based on the hash index.
bit := uint32(1) << keyHashFrag
exists := (n.bitmap & bit) != 0
// Mark as resized if the key doesn't exist.
if !exists {
*resized = true
}
// Find index of node based on popcount of bits before it.
idx := bits.OnesCount32(n.bitmap & (bit - 1))
// If the node already exists, delegate set operation to it.
// If the node doesn't exist then create a simple value leaf node.
var newNode mapNode[K, V]
if exists {
newNode = n.nodes[idx].set(key, value, shift+mapNodeBits, keyHash, h, mutable, resized)
} else {
newNode = newMapValueNode[K, V](keyHash, key, value)
}
// Convert to a hash-array node once we exceed the max bitmap size.
// Copy each node based on their bit position within the bitmap.
if !exists && len(n.nodes) > maxBitmapIndexedSize {
var other mapHashArrayNode[K, V]
for i := uint(0); i < uint(len(other.nodes)); i++ {
if n.bitmap&(uint32(1)<<i) != 0 {
other.nodes[i] = n.nodes[other.count]
other.count++
}
}
other.nodes[keyHashFrag] = newNode
other.count++
return &other
}
// Update in-place if mutable.
if mutable {
if exists {
n.nodes[idx] = newNode
} else {
n.bitmap |= bit
n.nodes = append(n.nodes, nil)
copy(n.nodes[idx+1:], n.nodes[idx:])
n.nodes[idx] = newNode
}
return n
}
// If node exists at given slot then overwrite it with new node.
// Otherwise expand the node list and insert new node into appropriate position.
other := &mapBitmapIndexedNode[K, V]{bitmap: n.bitmap | bit}
if exists {
other.nodes = make([]mapNode[K, V], len(n.nodes))
copy(other.nodes, n.nodes)
other.nodes[idx] = newNode
} else {
other.nodes = make([]mapNode[K, V], len(n.nodes)+1)
copy(other.nodes, n.nodes[:idx])
other.nodes[idx] = newNode
copy(other.nodes[idx+1:], n.nodes[idx:])
}
return other
}
// delete removes the key from the tree. If the key does not exist then the
// original node is returned. If removing the last child node then a nil is
// returned. Note that shrinking the node will not convert it to an array node.
func (n *mapBitmapIndexedNode[K, V]) delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
bit := uint32(1) << ((keyHash >> shift) & mapNodeMask)
// Return original node if key does not exist.
if (n.bitmap & bit) == 0 {
return n
}
// Find index of node based on popcount of bits before it.
idx := bits.OnesCount32(n.bitmap & (bit - 1))
// Delegate delete to child node.
child := n.nodes[idx]
newChild := child.delete(key, shift+mapNodeBits, keyHash, h, mutable, resized)
// Return original node if key doesn't exist in child.
if !*resized {
return n
}
// Remove if returned child has been deleted.
if newChild == nil {
// If we won't have any children then return nil.
if len(n.nodes) == 1 {
return nil
}
// Update in-place if mutable.
if mutable {
n.bitmap ^= bit
copy(n.nodes[idx:], n.nodes[idx+1:])
n.nodes[len(n.nodes)-1] = nil
n.nodes = n.nodes[:len(n.nodes)-1]
return n
}
// Return copy with bit removed from bitmap and node removed from node list.
other := &mapBitmapIndexedNode[K, V]{bitmap: n.bitmap ^ bit, nodes: make([]mapNode[K, V], len(n.nodes)-1)}
copy(other.nodes[:idx], n.nodes[:idx])
copy(other.nodes[idx:], n.nodes[idx+1:])
return other
}
// Generate copy, if necessary.
other := n
if !mutable {
other = &mapBitmapIndexedNode[K, V]{bitmap: n.bitmap, nodes: make([]mapNode[K, V], len(n.nodes))}
copy(other.nodes, n.nodes)
}
// Update child.
other.nodes[idx] = newChild
return other
}
// mapHashArrayNode is a map branch node that stores nodes in a fixed length
// array. Child nodes are indexed by their index bit segment for the current depth.
type mapHashArrayNode[K constraints.Ordered, V any] struct {
count uint // number of set nodes
nodes [mapNodeSize]mapNode[K, V] // child node slots, may contain empties
}
// clone returns a shallow copy of n.
func (n *mapHashArrayNode[K, V]) clone() *mapHashArrayNode[K, V] {
other := *n
return &other
}
// get returns the value for the given key.
func (n *mapHashArrayNode[K, V]) get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool) {
node := n.nodes[(keyHash>>shift)&mapNodeMask]
if node == nil {
return value, false
}
return node.get(key, shift+mapNodeBits, keyHash, h)
}
// set returns a node with the value set for the given key.
func (n *mapHashArrayNode[K, V]) set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
idx := (keyHash >> shift) & mapNodeMask
node := n.nodes[idx]
// If node at index doesn't exist, create a simple value leaf node.
// Otherwise delegate set to child node.
var newNode mapNode[K, V]
if node == nil {
*resized = true
newNode = newMapValueNode(keyHash, key, value)
} else {
newNode = node.set(key, value, shift+mapNodeBits, keyHash, h, mutable, resized)
}
// Generate copy, if necessary.
other := n
if !mutable {
other = n.clone()
}
// Update child node (and update size, if new).
if node == nil {
other.count++
}
other.nodes[idx] = newNode
return other
}
// delete returns a node with the given key removed. Returns the same node if
// the key does not exist. If node shrinks to within bitmap-indexed size then
// converts to a bitmap-indexed node.
func (n *mapHashArrayNode[K, V]) delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
idx := (keyHash >> shift) & mapNodeMask
node := n.nodes[idx]
// Return original node if child is not found.
if node == nil {
return n
}
// Return original node if child is unchanged.
newNode := node.delete(key, shift+mapNodeBits, keyHash, h, mutable, resized)
if !*resized {
return n
}
// If we remove a node and drop below a threshold, convert back to bitmap indexed node.
if newNode == nil && n.count <= maxBitmapIndexedSize {
other := &mapBitmapIndexedNode[K, V]{nodes: make([]mapNode[K, V], 0, n.count-1)}
for i, child := range n.nodes {
if child != nil && uint32(i) != idx {
other.bitmap |= 1 << uint(i)
other.nodes = append(other.nodes, child)
}
}
return other
}
// Generate copy, if necessary.
other := n
if !mutable {
other = n.clone()
}
// Return copy of node with child updated.
other.nodes[idx] = newNode
if newNode == nil {
other.count--
}
return other
}
// mapValueNode represents a leaf node with a single key/value pair.
// A value node can be converted to a hash collision leaf node if a different
// key with the same keyHash is inserted.
type mapValueNode[K constraints.Ordered, V any] struct {
keyHash uint32
key K
value V
}
// newMapValueNode returns a new instance of mapValueNode.
func newMapValueNode[K constraints.Ordered, V any](keyHash uint32, key K, value V) *mapValueNode[K, V] {
return &mapValueNode[K, V]{
keyHash: keyHash,
key: key,
value: value,
}
}
// keyHashValue returns the key hash for this node.
func (n *mapValueNode[K, V]) keyHashValue() uint32 {
return n.keyHash
}
// get returns the value for the given key.
func (n *mapValueNode[K, V]) get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool) {
if !h.Equal(n.key, key) {
return value, false
}
return n.value, true
}
// set returns a new node with the new value set for the key. If the key equals
// the node's key then a new value node is returned. If key is not equal to the
// node's key but has the same hash then a hash collision node is returned.
// Otherwise the nodes are merged into a branch node.
func (n *mapValueNode[K, V]) set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
// If the keys match then return a new value node overwriting the value.
if h.Equal(n.key, key) {
// Update in-place if mutable.
if mutable {
n.value = value
return n
}
// Otherwise return a new copy.
return newMapValueNode(n.keyHash, key, value)
}
*resized = true
// Recursively merge nodes together if key hashes are different.
if n.keyHash != keyHash {
return mergeIntoNode[K, V](n, shift, keyHash, key, value)
}
// Merge into collision node if hash matches.
return &mapHashCollisionNode[K, V]{keyHash: keyHash, entries: []mapEntry[K, V]{
{key: n.key, value: n.value},
{key: key, value: value},
}}
}
// delete returns nil if the key matches the node's key. Otherwise returns the original node.
func (n *mapValueNode[K, V]) delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
// Return original node if the keys do not match.
if !h.Equal(n.key, key) {
return n
}
// Otherwise remove the node if keys do match.
*resized = true
return nil
}
// mapHashCollisionNode represents a leaf node that contains two or more key/value
// pairs with the same key hash. Single pairs for a hash are stored as value nodes.
type mapHashCollisionNode[K constraints.Ordered, V any] struct {
keyHash uint32 // key hash for all entries
entries []mapEntry[K, V]
}
// keyHashValue returns the key hash for all entries on the node.
func (n *mapHashCollisionNode[K, V]) keyHashValue() uint32 {
return n.keyHash
}
// indexOf returns the index of the entry for the given key.
// Returns -1 if the key does not exist in the node.
func (n *mapHashCollisionNode[K, V]) indexOf(key K, h Hasher[K]) int {
for i := range n.entries {
if h.Equal(n.entries[i].key, key) {
return i
}
}
return -1
}
// get returns the value for the given key.
func (n *mapHashCollisionNode[K, V]) get(key K, shift uint, keyHash uint32, h Hasher[K]) (value V, ok bool) {
for i := range n.entries {
if h.Equal(n.entries[i].key, key) {
return n.entries[i].value, true
}
}
return value, false
}
// set returns a copy of the node with key set to the given value.
func (n *mapHashCollisionNode[K, V]) set(key K, value V, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
// Merge node with key/value pair if this is not a hash collision.
if n.keyHash != keyHash {
*resized = true
return mergeIntoNode[K, V](n, shift, keyHash, key, value)
}
// Update in-place if mutable.
if mutable {
if idx := n.indexOf(key, h); idx == -1 {
*resized = true
n.entries = append(n.entries, mapEntry[K, V]{key, value})
} else {
n.entries[idx] = mapEntry[K, V]{key, value}
}
return n
}
// Append to end of node if key doesn't exist & mark resized.
// Otherwise copy nodes and overwrite at matching key index.
other := &mapHashCollisionNode[K, V]{keyHash: n.keyHash}
if idx := n.indexOf(key, h); idx == -1 {
*resized = true
other.entries = make([]mapEntry[K, V], len(n.entries)+1)
copy(other.entries, n.entries)
other.entries[len(other.entries)-1] = mapEntry[K, V]{key, value}
} else {
other.entries = make([]mapEntry[K, V], len(n.entries))
copy(other.entries, n.entries)
other.entries[idx] = mapEntry[K, V]{key, value}
}
return other
}
// delete returns a node with the given key deleted. Returns the same node if
// the key does not exist. If removing the key would shrink the node to a single
// entry then a value node is returned.
func (n *mapHashCollisionNode[K, V]) delete(key K, shift uint, keyHash uint32, h Hasher[K], mutable bool, resized *bool) mapNode[K, V] {
idx := n.indexOf(key, h)
// Return original node if key is not found.
if idx == -1 {
return n
}
// Mark as resized if key exists.
*resized = true
// Convert to value node if we move to one entry.
if len(n.entries) == 2 {
return &mapValueNode[K, V]{
keyHash: n.keyHash,
key: n.entries[idx^1].key,
value: n.entries[idx^1].value,
}
}
// Remove entry in-place if mutable.
if mutable {
copy(n.entries[idx:], n.entries[idx+1:])
n.entries[len(n.entries)-1] = mapEntry[K, V]{}
n.entries = n.entries[:len(n.entries)-1]
return n
}
// Return copy without entry if immutable.
other := &mapHashCollisionNode[K, V]{keyHash: n.keyHash, entries: make([]mapEntry[K, V], len(n.entries)-1)}
copy(other.entries[:idx], n.entries[:idx])
copy(other.entries[idx:], n.entries[idx+1:])
return other
}
// mergeIntoNode merges a key/value pair into an existing node.
// Caller must verify that node's keyHash is not equal to keyHash.
func mergeIntoNode[K constraints.Ordered, V any](node mapLeafNode[K, V], shift uint, keyHash uint32, key K, value V) mapNode[K, V] {
idx1 := (node.keyHashValue() >> shift) & mapNodeMask
idx2 := (keyHash >> shift) & mapNodeMask
// Recursively build branch nodes to combine the node and its key.
other := &mapBitmapIndexedNode[K, V]{bitmap: (1 << idx1) | (1 << idx2)}
if idx1 == idx2 {
other.nodes = []mapNode[K, V]{mergeIntoNode(node, shift+mapNodeBits, keyHash, key, value)}
} else {
if newNode := newMapValueNode(keyHash, key, value); idx1 < idx2 {
other.nodes = []mapNode[K, V]{node, newNode}
} else {
other.nodes = []mapNode[K, V]{newNode, node}
}
}
return other
}
// mapEntry represents a single key/value pair.
type mapEntry[K constraints.Ordered, V any] struct {
key K
value V
}
// MapIterator represents an iterator over a map's key/value pairs. Although
// map keys are not sorted, the iterator's order is deterministic.
type MapIterator[K constraints.Ordered, V any] struct {
m *Map[K, V] // source map
stack [32]mapIteratorElem[K, V] // search stack
depth int // stack depth
}
// Done returns true if no more elements remain in the iterator.
func (itr *MapIterator[K, V]) Done() bool {
return itr.depth == -1
}
// First resets the iterator to the first key/value pair.
func (itr *MapIterator[K, V]) First() {
// Exit immediately if the map is empty.
if itr.m.root == nil {
itr.depth = -1
return
}
// Initialize the stack to the left most element.
itr.stack[0] = mapIteratorElem[K, V]{node: itr.m.root}
itr.depth = 0
itr.first()
}
// Next returns the next key/value pair. Returns a nil key when no elements remain.
func (itr *MapIterator[K, V]) Next() (key K, value V, ok bool) {
// Return nil key if iteration is done.
if itr.Done() {
return key, value, false
}
// Retrieve current index & value. Current node is always a leaf.
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *mapArrayNode[K, V]:
entry := &node.entries[elem.index]
key, value = entry.key, entry.value
case *mapValueNode[K, V]:
key, value = node.key, node.value
case *mapHashCollisionNode[K, V]:
entry := &node.entries[elem.index]
key, value = entry.key, entry.value
}
// Move up stack until we find a node that has remaining position ahead
// and move that element forward by one.
itr.next()
return key, value, true
}
// next moves to the next available key.
func (itr *MapIterator[K, V]) next() {
for ; itr.depth >= 0; itr.depth-- {
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *mapArrayNode[K, V]:
if elem.index < len(node.entries)-1 {
elem.index++
return
}
case *mapBitmapIndexedNode[K, V]:
if elem.index < len(node.nodes)-1 {
elem.index++
itr.stack[itr.depth+1].node = node.nodes[elem.index]
itr.depth++
itr.first()
return
}
case *mapHashArrayNode[K, V]:
for i := elem.index + 1; i < len(node.nodes); i++ {
if node.nodes[i] != nil {
elem.index = i
itr.stack[itr.depth+1].node = node.nodes[elem.index]
itr.depth++
itr.first()
return
}
}
case *mapValueNode[K, V]:
continue // always the last value, traverse up
case *mapHashCollisionNode[K, V]:
if elem.index < len(node.entries)-1 {
elem.index++
return
}
}
}
}
// first positions the stack left most index.
// Elements and indexes at and below the current depth are assumed to be correct.
func (itr *MapIterator[K, V]) first() {
for ; ; itr.depth++ {
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *mapBitmapIndexedNode[K, V]:
elem.index = 0
itr.stack[itr.depth+1].node = node.nodes[0]
case *mapHashArrayNode[K, V]:
for i := 0; i < len(node.nodes); i++ {
if node.nodes[i] != nil { // find first node
elem.index = i
itr.stack[itr.depth+1].node = node.nodes[i]
break
}
}
default: // *mapArrayNode, mapLeafNode
elem.index = 0
return
}
}
}
// mapIteratorElem represents a node/index pair in the MapIterator stack.
type mapIteratorElem[K constraints.Ordered, V any] struct {
node mapNode[K, V]
index int
}
// Sorted map child node limit size.
const (
sortedMapNodeSize = 32
)
// SortedMap represents a map of key/value pairs sorted by key. The sort order
// is determined by the Comparer used by the map.
//
// This map is implemented as a B+tree.
type SortedMap[K constraints.Ordered, V any] struct {
size int // total number of key/value pairs
root sortedMapNode[K, V] // root of b+tree
comparer Comparer[K]
}
// NewSortedMap returns a new instance of SortedMap. If comparer is nil then
// a default comparer is set after the first key is inserted. Default comparers
// exist for int, string, and byte slice keys.
func NewSortedMap[K constraints.Ordered, V any](comparer Comparer[K]) *SortedMap[K, V] {
return &SortedMap[K, V]{
comparer: comparer,
}
}
// Len returns the number of elements in the sorted map.
func (m *SortedMap[K, V]) Len() int {
return m.size
}
// Get returns the value for a given key and a flag indicating if the key is set.
// The flag can be used to distinguish between a nil-set key versus an unset key.
func (m *SortedMap[K, V]) Get(key K) (V, bool) {
if m.root == nil {
var v V
return v, false
}
return m.root.get(key, m.comparer)
}
// Set returns a copy of the map with the key set to the given value.
func (m *SortedMap[K, V]) Set(key K, value V) *SortedMap[K, V] {
return m.set(key, value, false)
}
func (m *SortedMap[K, V]) set(key K, value V, mutable bool) *SortedMap[K, V] {
// Set a comparer on the first value if one does not already exist.
comparer := m.comparer
if comparer == nil {
comparer = NewComparer[K](key)
}
// Create copy, if necessary.
other := m
if !mutable {
other = m.clone()
}
other.comparer = comparer
// If no values are set then initialize with a leaf node.
if m.root == nil {
other.size = 1
other.root = &sortedMapLeafNode[K, V]{entries: []mapEntry[K, V]{{key: key, value: value}}}
return other
}
// Otherwise delegate to root node.
// If a split occurs then grow the tree from the root.
var resized bool
newRoot, splitNode := m.root.set(key, value, comparer, mutable, &resized)
if splitNode != nil {
newRoot = newSortedMapBranchNode(newRoot, splitNode)
}
// Update root and size (if resized).
other.size = m.size
other.root = newRoot
if resized {
other.size++
}
return other
}
// Delete returns a copy of the map with the key removed.
// Returns the original map if key does not exist.
func (m *SortedMap[K, V]) Delete(key K) *SortedMap[K, V] {
return m.delete(key, false)
}
func (m *SortedMap[K, V]) delete(key K, mutable bool) *SortedMap[K, V] {
// Return original map if no keys exist.
if m.root == nil {
return m
}
// If the delete did not change the node then return the original map.
var resized bool
newRoot := m.root.delete(key, m.comparer, mutable, &resized)
if !resized {
return m
}
// Create copy, if necessary.
other := m
if !mutable {
other = m.clone()
}
// Update root and size.
other.size = m.size - 1
other.root = newRoot
return other
}
// clone returns a shallow copy of m.
func (m *SortedMap[K, V]) clone() *SortedMap[K, V] {
other := *m
return &other
}
// Iterator returns a new iterator for this map positioned at the first key.
func (m *SortedMap[K, V]) Iterator() *SortedMapIterator[K, V] {
itr := &SortedMapIterator[K, V]{m: m}
itr.First()
return itr
}
// SortedMapBuilder represents an efficient builder for creating sorted maps.
type SortedMapBuilder[K constraints.Ordered, V any] struct {
m *SortedMap[K, V] // current state
}
// NewSortedMapBuilder returns a new instance of SortedMapBuilder.
func NewSortedMapBuilder[K constraints.Ordered, V any](comparer Comparer[K]) *SortedMapBuilder[K, V] {
return &SortedMapBuilder[K, V]{m: NewSortedMap[K, V](comparer)}
}
// SortedMap returns the current copy of the map.
// The returned map is safe to use even if after the builder continues to be used.
func (b *SortedMapBuilder[K, V]) Map() *SortedMap[K, V] {
assert(b.m != nil, "immutable.SortedMapBuilder.Map(): duplicate call to fetch map")
m := b.m
b.m = nil
return m
}
// Len returns the number of elements in the underlying map.
func (b *SortedMapBuilder[K, V]) Len() int {
assert(b.m != nil, "immutable.SortedMapBuilder: builder invalid after Map() invocation")
return b.m.Len()
}
// Get returns the value for the given key.
func (b *SortedMapBuilder[K, V]) Get(key K) (value V, ok bool) {
assert(b.m != nil, "immutable.SortedMapBuilder: builder invalid after Map() invocation")
return b.m.Get(key)
}
// Set sets the value of the given key. See SortedMap.Set() for additional details.
func (b *SortedMapBuilder[K, V]) Set(key K, value V) {
assert(b.m != nil, "immutable.SortedMapBuilder: builder invalid after Map() invocation")
b.m = b.m.set(key, value, true)
}
// Delete removes the given key. See SortedMap.Delete() for additional details.
func (b *SortedMapBuilder[K, V]) Delete(key K) {
assert(b.m != nil, "immutable.SortedMapBuilder: builder invalid after Map() invocation")
b.m = b.m.delete(key, true)
}
// Iterator returns a new iterator for the underlying map positioned at the first key.
func (b *SortedMapBuilder[K, V]) Iterator() *SortedMapIterator[K, V] {
assert(b.m != nil, "immutable.SortedMapBuilder: builder invalid after Map() invocation")
return b.m.Iterator()
}
// sortedMapNode represents a branch or leaf node in the sorted map.
type sortedMapNode[K constraints.Ordered, V any] interface {
minKey() K
indexOf(key K, c Comparer[K]) int
get(key K, c Comparer[K]) (value V, ok bool)
set(key K, value V, c Comparer[K], mutable bool, resized *bool) (sortedMapNode[K, V], sortedMapNode[K, V])
delete(key K, c Comparer[K], mutable bool, resized *bool) sortedMapNode[K, V]
}
var _ sortedMapNode[string, any] = (*sortedMapBranchNode[string, any])(nil)
var _ sortedMapNode[string, any] = (*sortedMapLeafNode[string, any])(nil)
// sortedMapBranchNode represents a branch in the sorted map.
type sortedMapBranchNode[K constraints.Ordered, V any] struct {
elems []sortedMapBranchElem[K, V]
}
// newSortedMapBranchNode returns a new branch node with the given child nodes.
func newSortedMapBranchNode[K constraints.Ordered, V any](children ...sortedMapNode[K, V]) *sortedMapBranchNode[K, V] {
// Fetch min keys for every child.
elems := make([]sortedMapBranchElem[K, V], len(children))
for i, child := range children {
elems[i] = sortedMapBranchElem[K, V]{
key: child.minKey(),
node: child,
}
}
return &sortedMapBranchNode[K, V]{elems: elems}
}
// minKey returns the lowest key stored in this node's tree.
func (n *sortedMapBranchNode[K, V]) minKey() K {
return n.elems[0].node.minKey()
}
// indexOf returns the index of the key within the child nodes.
func (n *sortedMapBranchNode[K, V]) indexOf(key K, c Comparer[K]) int {
if idx := sort.Search(len(n.elems), func(i int) bool { return c.Compare(n.elems[i].key, key) == 1 }); idx > 0 {
return idx - 1
}
return 0
}
// get returns the value for the given key.
func (n *sortedMapBranchNode[K, V]) get(key K, c Comparer[K]) (value V, ok bool) {
idx := n.indexOf(key, c)
return n.elems[idx].node.get(key, c)
}
// set returns a copy of the node with the key set to the given value.
func (n *sortedMapBranchNode[K, V]) set(key K, value V, c Comparer[K], mutable bool, resized *bool) (sortedMapNode[K, V], sortedMapNode[K, V]) {
idx := n.indexOf(key, c)
// Delegate insert to child node.
newNode, splitNode := n.elems[idx].node.set(key, value, c, mutable, resized)
// Update in-place, if mutable.
if mutable {
n.elems[idx] = sortedMapBranchElem[K, V]{key: newNode.minKey(), node: newNode}
if splitNode != nil {
n.elems = append(n.elems, sortedMapBranchElem[K, V]{})
copy(n.elems[idx+1:], n.elems[idx:])
n.elems[idx+1] = sortedMapBranchElem[K, V]{key: splitNode.minKey(), node: splitNode}
}
// If the child splits and we have no more room then we split too.
if len(n.elems) > sortedMapNodeSize {
splitIdx := len(n.elems) / 2
newNode := &sortedMapBranchNode[K, V]{elems: n.elems[:splitIdx:splitIdx]}
splitNode := &sortedMapBranchNode[K, V]{elems: n.elems[splitIdx:]}
return newNode, splitNode
}
return n, nil
}
// If no split occurs, copy branch and update keys.
// If the child splits, insert new key/child into copy of branch.
var other sortedMapBranchNode[K, V]
if splitNode == nil {
other.elems = make([]sortedMapBranchElem[K, V], len(n.elems))
copy(other.elems, n.elems)
other.elems[idx] = sortedMapBranchElem[K, V]{
key: newNode.minKey(),
node: newNode,
}
} else {
other.elems = make([]sortedMapBranchElem[K, V], len(n.elems)+1)
copy(other.elems[:idx], n.elems[:idx])
copy(other.elems[idx+1:], n.elems[idx:])
other.elems[idx] = sortedMapBranchElem[K, V]{
key: newNode.minKey(),
node: newNode,
}
other.elems[idx+1] = sortedMapBranchElem[K, V]{
key: splitNode.minKey(),
node: splitNode,
}
}
// If the child splits and we have no more room then we split too.
if len(other.elems) > sortedMapNodeSize {
splitIdx := len(other.elems) / 2
newNode := &sortedMapBranchNode[K, V]{elems: other.elems[:splitIdx:splitIdx]}
splitNode := &sortedMapBranchNode[K, V]{elems: other.elems[splitIdx:]}
return newNode, splitNode
}
// Otherwise return the new branch node with the updated entry.
return &other, nil
}
// delete returns a node with the key removed. Returns the same node if the key
// does not exist. Returns nil if all child nodes are removed.
func (n *sortedMapBranchNode[K, V]) delete(key K, c Comparer[K], mutable bool, resized *bool) sortedMapNode[K, V] {
idx := n.indexOf(key, c)
// Return original node if child has not changed.
newNode := n.elems[idx].node.delete(key, c, mutable, resized)
if !*resized {
return n
}
// Remove child if it is now nil.
if newNode == nil {
// If this node will become empty then simply return nil.
if len(n.elems) == 1 {
return nil
}
// If mutable, update in-place.
if mutable {
copy(n.elems[idx:], n.elems[idx+1:])
n.elems[len(n.elems)-1] = sortedMapBranchElem[K, V]{}
n.elems = n.elems[:len(n.elems)-1]
return n
}
// Return a copy without the given node.
other := &sortedMapBranchNode[K, V]{elems: make([]sortedMapBranchElem[K, V], len(n.elems)-1)}
copy(other.elems[:idx], n.elems[:idx])
copy(other.elems[idx:], n.elems[idx+1:])
return other
}
// If mutable, update in-place.
if mutable {
n.elems[idx] = sortedMapBranchElem[K, V]{key: newNode.minKey(), node: newNode}
return n
}
// Return a copy with the updated node.
other := &sortedMapBranchNode[K, V]{elems: make([]sortedMapBranchElem[K, V], len(n.elems))}
copy(other.elems, n.elems)
other.elems[idx] = sortedMapBranchElem[K, V]{
key: newNode.minKey(),
node: newNode,
}
return other
}
type sortedMapBranchElem[K constraints.Ordered, V any] struct {
key K
node sortedMapNode[K, V]
}
// sortedMapLeafNode represents a leaf node in the sorted map.
type sortedMapLeafNode[K constraints.Ordered, V any] struct {
entries []mapEntry[K, V]
}
// minKey returns the first key stored in this node.
func (n *sortedMapLeafNode[K, V]) minKey() K {
return n.entries[0].key
}
// indexOf returns the index of the given key.
func (n *sortedMapLeafNode[K, V]) indexOf(key K, c Comparer[K]) int {
return sort.Search(len(n.entries), func(i int) bool {
return c.Compare(n.entries[i].key, key) != -1 // GTE
})
}
// get returns the value of the given key.
func (n *sortedMapLeafNode[K, V]) get(key K, c Comparer[K]) (value V, ok bool) {
idx := n.indexOf(key, c)
// If the index is beyond the entry count or the key is not equal then return 'not found'.
if idx == len(n.entries) || c.Compare(n.entries[idx].key, key) != 0 {
return value, false
}
// If the key matches then return its value.
return n.entries[idx].value, true
}
// set returns a copy of node with the key set to the given value. If the update
// causes the node to grow beyond the maximum size then it is split in two.
func (n *sortedMapLeafNode[K, V]) set(key K, value V, c Comparer[K], mutable bool, resized *bool) (sortedMapNode[K, V], sortedMapNode[K, V]) {
// Find the insertion index for the key.
idx := n.indexOf(key, c)
exists := idx < len(n.entries) && c.Compare(n.entries[idx].key, key) == 0
// Update in-place, if mutable.
if mutable {
if !exists {
*resized = true
n.entries = append(n.entries, mapEntry[K, V]{})
copy(n.entries[idx+1:], n.entries[idx:])
}
n.entries[idx] = mapEntry[K, V]{key: key, value: value}
// If the key doesn't exist and we exceed our max allowed values then split.
if len(n.entries) > sortedMapNodeSize {
splitIdx := len(n.entries) / 2
newNode := &sortedMapLeafNode[K, V]{entries: n.entries[:splitIdx:splitIdx]}
splitNode := &sortedMapLeafNode[K, V]{entries: n.entries[splitIdx:]}
return newNode, splitNode
}
return n, nil
}
// If the key matches then simply return a copy with the entry overridden.
// If there is no match then insert new entry and mark as resized.
var newEntries []mapEntry[K, V]
if exists {
newEntries = make([]mapEntry[K, V], len(n.entries))
copy(newEntries, n.entries)
newEntries[idx] = mapEntry[K, V]{key: key, value: value}
} else {
*resized = true
newEntries = make([]mapEntry[K, V], len(n.entries)+1)
copy(newEntries[:idx], n.entries[:idx])
newEntries[idx] = mapEntry[K, V]{key: key, value: value}
copy(newEntries[idx+1:], n.entries[idx:])
}
// If the key doesn't exist and we exceed our max allowed values then split.
if len(newEntries) > sortedMapNodeSize {
splitIdx := len(newEntries) / 2
newNode := &sortedMapLeafNode[K, V]{entries: newEntries[:splitIdx:splitIdx]}
splitNode := &sortedMapLeafNode[K, V]{entries: newEntries[splitIdx:]}
return newNode, splitNode
}
// Otherwise return the new leaf node with the updated entry.
return &sortedMapLeafNode[K, V]{entries: newEntries}, nil
}
// delete returns a copy of node with key removed. Returns the original node if
// the key does not exist. Returns nil if the removed key is the last remaining key.
func (n *sortedMapLeafNode[K, V]) delete(key K, c Comparer[K], mutable bool, resized *bool) sortedMapNode[K, V] {
idx := n.indexOf(key, c)
// Return original node if key is not found.
if idx >= len(n.entries) || c.Compare(n.entries[idx].key, key) != 0 {
return n
}
*resized = true
// If this is the last entry then return nil.
if len(n.entries) == 1 {
return nil
}
// Update in-place, if mutable.
if mutable {
copy(n.entries[idx:], n.entries[idx+1:])
n.entries[len(n.entries)-1] = mapEntry[K, V]{}
n.entries = n.entries[:len(n.entries)-1]
return n
}
// Return copy of node with entry removed.
other := &sortedMapLeafNode[K, V]{entries: make([]mapEntry[K, V], len(n.entries)-1)}
copy(other.entries[:idx], n.entries[:idx])
copy(other.entries[idx:], n.entries[idx+1:])
return other
}
// SortedMapIterator represents an iterator over a sorted map.
// Iteration can occur in natural or reverse order based on use of Next() or Prev().
type SortedMapIterator[K constraints.Ordered, V any] struct {
m *SortedMap[K, V] // source map
stack [32]sortedMapIteratorElem[K, V] // search stack
depth int // stack depth
}
// Done returns true if no more key/value pairs remain in the iterator.
func (itr *SortedMapIterator[K, V]) Done() bool {
return itr.depth == -1
}
// First moves the iterator to the first key/value pair.
func (itr *SortedMapIterator[K, V]) First() {
if itr.m.root == nil {
itr.depth = -1
return
}
itr.stack[0] = sortedMapIteratorElem[K, V]{node: itr.m.root}
itr.depth = 0
itr.first()
}
// Last moves the iterator to the last key/value pair.
func (itr *SortedMapIterator[K, V]) Last() {
if itr.m.root == nil {
itr.depth = -1
return
}
itr.stack[0] = sortedMapIteratorElem[K, V]{node: itr.m.root}
itr.depth = 0
itr.last()
}
// Seek moves the iterator position to the given key in the map.
// If the key does not exist then the next key is used. If no more keys exist
// then the iteartor is marked as done.
func (itr *SortedMapIterator[K, V]) Seek(key K) {
if itr.m.root == nil {
itr.depth = -1
return
}
itr.stack[0] = sortedMapIteratorElem[K, V]{node: itr.m.root}
itr.depth = 0
itr.seek(key)
}
// Next returns the current key/value pair and moves the iterator forward.
// Returns a nil key if the there are no more elements to return.
func (itr *SortedMapIterator[K, V]) Next() (key K, value V, ok bool) {
// Return nil key if iteration is complete.
if itr.Done() {
return key, value, false
}
// Retrieve current key/value pair.
leafElem := &itr.stack[itr.depth]
leafNode := leafElem.node.(*sortedMapLeafNode[K, V])
leafEntry := &leafNode.entries[leafElem.index]
key, value = leafEntry.key, leafEntry.value
// Move to the next available key/value pair.
itr.next()
// Only occurs when iterator is done.
return key, value, true
}
// next moves to the next key. If no keys are after then depth is set to -1.
func (itr *SortedMapIterator[K, V]) next() {
for ; itr.depth >= 0; itr.depth-- {
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *sortedMapLeafNode[K, V]:
if elem.index < len(node.entries)-1 {
elem.index++
return
}
case *sortedMapBranchNode[K, V]:
if elem.index < len(node.elems)-1 {
elem.index++
itr.stack[itr.depth+1].node = node.elems[elem.index].node
itr.depth++
itr.first()
return
}
}
}
}
// Prev returns the current key/value pair and moves the iterator backward.
// Returns a nil key if the there are no more elements to return.
func (itr *SortedMapIterator[K, V]) Prev() (key K, value V, ok bool) {
// Return nil key if iteration is complete.
if itr.Done() {
return key, value, false
}
// Retrieve current key/value pair.
leafElem := &itr.stack[itr.depth]
leafNode := leafElem.node.(*sortedMapLeafNode[K, V])
leafEntry := &leafNode.entries[leafElem.index]
key, value = leafEntry.key, leafEntry.value
itr.prev()
return key, value, true
}
// prev moves to the previous key. If no keys are before then depth is set to -1.
func (itr *SortedMapIterator[K, V]) prev() {
for ; itr.depth >= 0; itr.depth-- {
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *sortedMapLeafNode[K, V]:
if elem.index > 0 {
elem.index--
return
}
case *sortedMapBranchNode[K, V]:
if elem.index > 0 {
elem.index--
itr.stack[itr.depth+1].node = node.elems[elem.index].node
itr.depth++
itr.last()
return
}
}
}
}
// first positions the stack to the leftmost key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator[K, V]) first() {
for {
elem := &itr.stack[itr.depth]
elem.index = 0
switch node := elem.node.(type) {
case *sortedMapBranchNode[K, V]:
itr.stack[itr.depth+1] = sortedMapIteratorElem[K, V]{node: node.elems[elem.index].node}
itr.depth++
case *sortedMapLeafNode[K, V]:
return
}
}
}
// last positions the stack to the rightmost key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator[K, V]) last() {
for {
elem := &itr.stack[itr.depth]
switch node := elem.node.(type) {
case *sortedMapBranchNode[K, V]:
elem.index = len(node.elems) - 1
itr.stack[itr.depth+1] = sortedMapIteratorElem[K, V]{node: node.elems[elem.index].node}
itr.depth++
case *sortedMapLeafNode[K, V]:
elem.index = len(node.entries) - 1
return
}
}
}
// seek positions the stack to the given key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator[K, V]) seek(key K) {
for {
elem := &itr.stack[itr.depth]
elem.index = elem.node.indexOf(key, itr.m.comparer)
switch node := elem.node.(type) {
case *sortedMapBranchNode[K, V]:
itr.stack[itr.depth+1] = sortedMapIteratorElem[K, V]{node: node.elems[elem.index].node}
itr.depth++
case *sortedMapLeafNode[K, V]:
if elem.index == len(node.entries) {
itr.next()
}
return
}
}
}
// sortedMapIteratorElem represents node/index pair in the SortedMapIterator stack.
type sortedMapIteratorElem[K constraints.Ordered, V any] struct {
node sortedMapNode[K, V]
index int
}
// Hasher hashes keys and checks them for equality.
type Hasher[K constraints.Ordered] interface {
// Computes a hash for key.
Hash(key K) uint32
// Returns true if a and b are equal.
Equal(a, b K) bool
}
// NewHasher returns the built-in hasher for a given key type.
func NewHasher[K constraints.Ordered](key K) Hasher[K] {
// Attempt to use non-reflection based hasher first.
switch (any(key)).(type) {
case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr, string:
return &defaultHasher[K]{}
}
// Fallback to reflection-based hasher otherwise.
// This is used when caller wraps a type around a primitive type.
switch reflect.TypeOf(key).Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.String:
return &reflectHasher[K]{}
}
// If no hashers match then panic.
// This is a compile time issue so it should not return an error.
panic(fmt.Sprintf("immutable.NewHasher: must set hasher for %T type", key))
}
// Hash returns a hash for value.
func hashString(value string) uint32 {
var hash uint32
for i, value := 0, value; i < len(value); i++ {
hash = 31*hash + uint32(value[i])
}
return hash
}
// reflectIntHasher implements a reflection-based Hasher for int keys.
type reflectHasher[K constraints.Ordered] struct{}
// Hash returns a hash for key.
func (h *reflectHasher[K]) Hash(key K) uint32 {
switch reflect.TypeOf(key).Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return hashUint64(uint64(reflect.ValueOf(key).Int()))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return hashUint64(reflect.ValueOf(key).Uint())
case reflect.String:
var hash uint32
s := reflect.ValueOf(key).String()
for i := 0; i < len(s); i++ {
hash = 31*hash + uint32(s[i])
}
return hash
}
panic(fmt.Sprintf("immutable.reflectHasher.Hash: reflectHasher does not support %T type", key))
}
// Equal returns true if a is equal to b. Otherwise returns false.
// Panics if a and b are not ints.
func (h *reflectHasher[K]) Equal(a, b K) bool {
switch reflect.TypeOf(a).Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return reflect.ValueOf(a).Int() == reflect.ValueOf(b).Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return reflect.ValueOf(a).Uint() == reflect.ValueOf(b).Uint()
case reflect.String:
return reflect.ValueOf(a).String() == reflect.ValueOf(b).String()
}
panic(fmt.Sprintf("immutable.reflectHasher.Equal: reflectHasher does not support %T type", a))
}
// hashUint64 returns a 32-bit hash for a 64-bit value.
func hashUint64(value uint64) uint32 {
hash := value
for value > 0xffffffff {
value /= 0xffffffff
hash ^= value
}
return uint32(hash)
}
// defaultHasher implements Hasher.
type defaultHasher[K constraints.Ordered] struct{}
// Hash returns a hash for key.
func (h *defaultHasher[K]) Hash(key K) uint32 {
// Attempt to use non-reflection based hasher first.
switch x := (any(key)).(type) {
case int:
return hashUint64(uint64(x))
case int8:
return hashUint64(uint64(x))
case int16:
return hashUint64(uint64(x))
case int32:
return hashUint64(uint64(x))
case int64:
return hashUint64(uint64(x))
case uint:
return hashUint64(uint64(x))
case uint8:
return hashUint64(uint64(x))
case uint16:
return hashUint64(uint64(x))
case uint32:
return hashUint64(uint64(x))
case uint64:
return hashUint64(uint64(x))
case uintptr:
return hashUint64(uint64(x))
case string:
return hashString(x)
}
panic(fmt.Sprintf("immutable.defaultHasher.Hash: must set comparer for %T type", key))
}
// Equal returns true if a is equal to b. Otherwise returns false.
// Panics if a and b are not ints.
func (h *defaultHasher[K]) Equal(a, b K) bool {
return a == b
}
// Comparer allows the comparison of two keys for the purpose of sorting.
type Comparer[K constraints.Ordered] interface {
// Returns -1 if a is less than b, returns 1 if a is greater than b,
// and returns 0 if a is equal to b.
Compare(a, b K) int
}
// NewComparer returns the built-in comparer for a given key type.
func NewComparer[K constraints.Ordered](key K) Comparer[K] {
// Attempt to use non-reflection based comparer first.
switch (any(key)).(type) {
case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr, string:
return &defaultComparer[K]{}
}
// Fallback to reflection-based comparer otherwise.
// This is used when caller wraps a type around a primitive type.
switch reflect.TypeOf(key).Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.String:
return &reflectComparer[K]{}
}
// If no comparers match then panic.
// This is a compile time issue so it should not return an error.
panic(fmt.Sprintf("immutable.NewComparer: must set comparer for %T type", key))
}
// defaultComparer compares two integers. Implements Comparer.
type defaultComparer[K constraints.Ordered] struct{}
// Compare returns -1 if a is less than b, returns 1 if a is greater than b, and
// returns 0 if a is equal to b. Panic if a or b is not an int.
func (c *defaultComparer[K]) Compare(i K, j K) int {
if i < j {
return -1
} else if i > j {
return 1
}
return 0
}
// reflectIntComparer compares two int values using reflection. Implements Comparer.
type reflectComparer[K constraints.Ordered] struct{}
// Compare returns -1 if a is less than b, returns 1 if a is greater than b, and
// returns 0 if a is equal to b. Panic if a or b is not an int.
func (c *reflectComparer[K]) Compare(a, b K) int {
switch reflect.TypeOf(a).Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
if i, j := reflect.ValueOf(a).Int(), reflect.ValueOf(b).Int(); i < j {
return -1
} else if i > j {
return 1
}
return 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if i, j := reflect.ValueOf(a).Uint(), reflect.ValueOf(b).Uint(); i < j {
return -1
} else if i > j {
return 1
}
return 0
case reflect.String:
return strings.Compare(reflect.ValueOf(a).String(), reflect.ValueOf(b).String())
}
panic(fmt.Sprintf("immutable.reflectComparer.Compare: must set comparer for %T type", a))
}
func assert(condition bool, message string) {
if !condition {
panic(message)
}
}