package bbolt import ( "encoding/hex" "fmt" "go.etcd.io/bbolt/internal/common" ) // Check performs several consistency checks on the database for this transaction. // An error is returned if any inconsistency is found. // // It can be safely run concurrently on a writable transaction. However, this // incurs a high cost for large databases and databases with a lot of subbuckets // because of caching. This overhead can be removed if running on a read-only // transaction, however, it is not safe to execute other writer transactions at // the same time. // // It also allows users to provide a customized `KVStringer` implementation, // so that bolt can generate human-readable diagnostic messages. func (tx *Tx) Check(options ...CheckOption) <-chan error { chkConfig := checkConfig{ kvStringer: HexKVStringer(), } for _, op := range options { op(&chkConfig) } ch := make(chan error) go func() { // Close the channel to signal completion. defer close(ch) tx.check(chkConfig, ch) }() return ch } func (tx *Tx) check(cfg checkConfig, ch chan error) { // Force loading free list if opened in ReadOnly mode. tx.db.loadFreelist() // Check if any pages are double freed. freed := make(map[common.Pgid]bool) all := make([]common.Pgid, tx.db.freelist.Count()) tx.db.freelist.Copyall(all) for _, id := range all { if freed[id] { ch <- fmt.Errorf("page %d: already freed", id) } freed[id] = true } // Track every reachable page. reachable := make(map[common.Pgid]*common.Page) reachable[0] = tx.page(0) // meta0 reachable[1] = tx.page(1) // meta1 if tx.meta.Freelist() != common.PgidNoFreelist { for i := uint32(0); i <= tx.page(tx.meta.Freelist()).Overflow(); i++ { reachable[tx.meta.Freelist()+common.Pgid(i)] = tx.page(tx.meta.Freelist()) } } if cfg.pageId == 0 { // Check the whole db file, starting from the root bucket and // recursively check all child buckets. tx.recursivelyCheckBucket(&tx.root, reachable, freed, cfg.kvStringer, ch) // Ensure all pages below high water mark are either reachable or freed. for i := common.Pgid(0); i < tx.meta.Pgid(); i++ { _, isReachable := reachable[i] if !isReachable && !freed[i] { ch <- fmt.Errorf("page %d: unreachable unfreed", int(i)) } } } else { // Check the db file starting from a specified pageId. if cfg.pageId < 2 || cfg.pageId >= uint64(tx.meta.Pgid()) { ch <- fmt.Errorf("page ID (%d) out of range [%d, %d)", cfg.pageId, 2, tx.meta.Pgid()) return } tx.recursivelyCheckPage(common.Pgid(cfg.pageId), reachable, freed, cfg.kvStringer, ch) } } func (tx *Tx) recursivelyCheckPage(pageId common.Pgid, reachable map[common.Pgid]*common.Page, freed map[common.Pgid]bool, kvStringer KVStringer, ch chan error) { tx.checkInvariantProperties(pageId, reachable, freed, kvStringer, ch) tx.recursivelyCheckBucketInPage(pageId, reachable, freed, kvStringer, ch) } func (tx *Tx) recursivelyCheckBucketInPage(pageId common.Pgid, reachable map[common.Pgid]*common.Page, freed map[common.Pgid]bool, kvStringer KVStringer, ch chan error) { p := tx.page(pageId) switch { case p.IsBranchPage(): for i := range p.BranchPageElements() { elem := p.BranchPageElement(uint16(i)) tx.recursivelyCheckBucketInPage(elem.Pgid(), reachable, freed, kvStringer, ch) } case p.IsLeafPage(): for i := range p.LeafPageElements() { elem := p.LeafPageElement(uint16(i)) if elem.IsBucketEntry() { inBkt := common.NewInBucket(pageId, 0) tmpBucket := Bucket{ InBucket: &inBkt, rootNode: &node{isLeaf: p.IsLeafPage()}, FillPercent: DefaultFillPercent, tx: tx, } if child := tmpBucket.Bucket(elem.Key()); child != nil { tx.recursivelyCheckBucket(child, reachable, freed, kvStringer, ch) } } } default: ch <- fmt.Errorf("unexpected page type (flags: %x) for pgId:%d", p.Flags(), pageId) } } func (tx *Tx) recursivelyCheckBucket(b *Bucket, reachable map[common.Pgid]*common.Page, freed map[common.Pgid]bool, kvStringer KVStringer, ch chan error) { // Ignore inline buckets. if b.RootPage() == 0 { return } tx.checkInvariantProperties(b.RootPage(), reachable, freed, kvStringer, ch) // Check each bucket within this bucket. _ = b.ForEachBucket(func(k []byte) error { if child := b.Bucket(k); child != nil { tx.recursivelyCheckBucket(child, reachable, freed, kvStringer, ch) } return nil }) } func (tx *Tx) checkInvariantProperties(pageId common.Pgid, reachable map[common.Pgid]*common.Page, freed map[common.Pgid]bool, kvStringer KVStringer, ch chan error) { tx.forEachPage(pageId, func(p *common.Page, _ int, stack []common.Pgid) { verifyPageReachable(p, tx.meta.Pgid(), stack, reachable, freed, ch) }) tx.recursivelyCheckPageKeyOrder(pageId, kvStringer.KeyToString, ch) } func verifyPageReachable(p *common.Page, hwm common.Pgid, stack []common.Pgid, reachable map[common.Pgid]*common.Page, freed map[common.Pgid]bool, ch chan error) { if p.Id() > hwm { ch <- fmt.Errorf("page %d: out of bounds: %d (stack: %v)", int(p.Id()), int(hwm), stack) } // Ensure each page is only referenced once. for i := common.Pgid(0); i <= common.Pgid(p.Overflow()); i++ { var id = p.Id() + i if _, ok := reachable[id]; ok { ch <- fmt.Errorf("page %d: multiple references (stack: %v)", int(id), stack) } reachable[id] = p } // We should only encounter un-freed leaf and branch pages. if freed[p.Id()] { ch <- fmt.Errorf("page %d: reachable freed", int(p.Id())) } else if !p.IsBranchPage() && !p.IsLeafPage() { ch <- fmt.Errorf("page %d: invalid type: %s (stack: %v)", int(p.Id()), p.Typ(), stack) } } // recursivelyCheckPageKeyOrder verifies database consistency with respect to b-tree // key order constraints: // - keys on pages must be sorted // - keys on children pages are between 2 consecutive keys on the parent's branch page). func (tx *Tx) recursivelyCheckPageKeyOrder(pgId common.Pgid, keyToString func([]byte) string, ch chan error) { tx.recursivelyCheckPageKeyOrderInternal(pgId, nil, nil, nil, keyToString, ch) } // recursivelyCheckPageKeyOrderInternal verifies that all keys in the subtree rooted at `pgid` are: // - >=`minKeyClosed` (can be nil) // - <`maxKeyOpen` (can be nil) // - Are in right ordering relationship to their parents. // `pagesStack` is expected to contain IDs of pages from the tree root to `pgid` for the clean debugging message. func (tx *Tx) recursivelyCheckPageKeyOrderInternal( pgId common.Pgid, minKeyClosed, maxKeyOpen []byte, pagesStack []common.Pgid, keyToString func([]byte) string, ch chan error) (maxKeyInSubtree []byte) { p := tx.page(pgId) pagesStack = append(pagesStack, pgId) switch { case p.IsBranchPage(): // For branch page we navigate ranges of all subpages. runningMin := minKeyClosed for i := range p.BranchPageElements() { elem := p.BranchPageElement(uint16(i)) verifyKeyOrder(elem.Pgid(), "branch", i, elem.Key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack) maxKey := maxKeyOpen if i < len(p.BranchPageElements())-1 { maxKey = p.BranchPageElement(uint16(i + 1)).Key() } maxKeyInSubtree = tx.recursivelyCheckPageKeyOrderInternal(elem.Pgid(), elem.Key(), maxKey, pagesStack, keyToString, ch) runningMin = maxKeyInSubtree } return maxKeyInSubtree case p.IsLeafPage(): runningMin := minKeyClosed for i := range p.LeafPageElements() { elem := p.LeafPageElement(uint16(i)) verifyKeyOrder(pgId, "leaf", i, elem.Key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack) runningMin = elem.Key() } if p.Count() > 0 { return p.LeafPageElement(p.Count() - 1).Key() } default: ch <- fmt.Errorf("unexpected page type (flags: %x) for pgId:%d", p.Flags(), pgId) } return maxKeyInSubtree } /*** * verifyKeyOrder checks whether an entry with given #index on pgId (pageType: "branch|leaf") that has given "key", * is within range determined by (previousKey..maxKeyOpen) and reports found violations to the channel (ch). */ func verifyKeyOrder(pgId common.Pgid, pageType string, index int, key []byte, previousKey []byte, maxKeyOpen []byte, ch chan error, keyToString func([]byte) string, pagesStack []common.Pgid) { if index == 0 && previousKey != nil && compareKeys(previousKey, key) > 0 { ch <- fmt.Errorf("the first key[%d]=(hex)%s on %s page(%d) needs to be >= the key in the ancestor (%s). Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } if index > 0 { cmpRet := compareKeys(previousKey, key) if cmpRet > 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found <) than previous element (hex)%s. Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } if cmpRet == 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found =) than previous element (hex)%s. Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } } if maxKeyOpen != nil && compareKeys(key, maxKeyOpen) >= 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be < than key of the next element in ancestor (hex)%s. Pages stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } } // =========================================================================================== type checkConfig struct { kvStringer KVStringer pageId uint64 } type CheckOption func(options *checkConfig) func WithKVStringer(kvStringer KVStringer) CheckOption { return func(c *checkConfig) { c.kvStringer = kvStringer } } // WithPageId sets a page ID from which the check command starts to check func WithPageId(pageId uint64) CheckOption { return func(c *checkConfig) { c.pageId = pageId } } // KVStringer allows to prepare human-readable diagnostic messages. type KVStringer interface { KeyToString([]byte) string ValueToString([]byte) string } // HexKVStringer serializes both key & value to hex representation. func HexKVStringer() KVStringer { return hexKvStringer{} } type hexKvStringer struct{} func (_ hexKvStringer) KeyToString(key []byte) string { return hex.EncodeToString(key) } func (_ hexKvStringer) ValueToString(value []byte) string { return hex.EncodeToString(value) }